•

Mark Scheme

4730 Mechanics 3

1 (i)	For triangle sketched with sides $(0.5)2.5$ and $(0.5)6.3$ and angle θ correctly marked OR Changes of velocity in i and j directions $2.5\cos\theta - 6.3$ and $2.5\sin\theta$, respectively. For sides $0.5x2.5$, $0.5x6.3$ and 2.6 (or 2.5 , 6.3	B1	May be implied in subsequent working.
	and 5.2) OR -2.6cos $\alpha = 0.5(2.5cos \theta - 6.3)$ and 2.6sin $\alpha = 0.5(2.5sin \theta)$ $[5.2^2 = 2.5^2 + 6.3^2 - 2x2.5x6.3cos \theta$ OR $2.6^2 = 0.5^2 \{(2.5cos \theta - 6.3)^2 + (2.5sin \theta)^2\}$ $cos \theta = 0.6$	B1ft M1 A1 [4]	May be implied in subsequent working. For using cosine rule in triangle or eliminating α . AG
(ii)	$\sin \alpha = 2.5 \times 0.8 / 5.2$ OR -2.6 $\cos \alpha = 0.5 (2.5 \times 0.6 - 6.3)$ Impulse makes angle of 157° or 2.75° with	M1 A1 M1	For appropriate use of the sine rule or substituting for θ in one of the above equations in θ and α For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{\circ}$
	original direction of motion of P.	A1 [4]	SR (relating to previous 2 marks; max 1 mark out of 2) $\alpha = 23^{\circ}$ or 0.395° B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
			needed)
	X - Y = 35	A1	
		[2]	
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
			needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
		[4]	-

physicsandmathstutor.com

4730

Mark Scheme

3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$	M1	For using $T = \lambda x/L$ for PA or PB
	$T_A - T_B = 18 - 6 = 12 = W \rightarrow P$ in equil'm.	A1	
		[2]	
(ii)	Extensions are $0.45 + x$ and $0.15 - x$	B1	
	Tensions are $18 + 40x$ and $6 - 40x$	B1	AG From T = λ x/L for PA and PB
		[2]	
(iii)			For using Newton's second law (4 terms
	$[12 + (6 - 40x) - (18 + 40x) = 12\ddot{x}/g]$	M1	required)
	$\ddot{x} = -80 \text{gx}/12 \rightarrow \text{SHM}$	A1	
	Period is 0.777s	A1	AG From Period = $2\pi \sqrt{12 / (80 g)}$
		[3]	
(iv)	$v_{\text{max}} = 0.15 \sqrt{80 g / 12}$		
	or $v_{max} = 2 \pi x 0.15 / 0.777$		
	or $\frac{1}{2}(12/g)v_{max}^{2} + mg(0.15)$	M1	For using $v_{max} = An$ or $v_{max} = 2 \pi A/T$ or
	$+24\{0.45^2+0.15^2-0.6^2\}/(2x0.6)=0]$	M1 A1	conservation of energy (5 terms needed)
	Speed is 1.21ms ⁻¹	[2]	
L		[4]	

4 (i)	Loss in PE = mg(0.5sin θ) [$\frac{1}{2}$ mv ² - $\frac{1}{2}$ m3 ² = mg(0.5sin θ)] v ² = 9 + 9.8sin θ	B1 M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$a_{r} = 18 + 19.6\sin\theta$ $[ma_{t} = mg\cos\theta]$ $a_{t} = 9.8\cos\theta$	B1 M1 A1 [3]	Using $a_r = v^2/0.5$ For using Newton's second law tangentially
(iii)	$[T - mg \sin \theta = ma_r]$ T - 1.96sin θ = 0.2(18 + 19.6sin θ) T = 3.6 + 5.88sin θ θ = 3.8	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

physicsandmathstutor.com

4730

Mark Scheme

January 2009

5	Initial i components of velocity for A and B		
	are 4ms ⁻¹ and 3ms ⁻¹ respectively.	B1	May be implied.
		M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A1	
		M1	For using NEL
	0.75(4-3) = b - a	A1	
		M1	For attempting to find a
	a = 3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
		M1	For using $\tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft	ft incorrect value of a ($\neq 0$) only
		[10]	
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for <i>both</i> equ's
			a = 4 M1 as scheme A1
			j component for A is 4ms ⁻¹ B1
			Angle $\tan^{-1}(4/4) = 45^{\circ}$ M1 as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10}$ (= 14)	B1	
	[0.125 dv/dt = 0.125 g - 0.025 v]	M1 M1	For using Newton's second law with a = dv/dt (3 terms required) For separating variables and attempt to integrate
	$\int \frac{5dv}{5g - v} = \int dt$		integrate
	$-5 \ln(5g - v) = t (+A)$ [-5 ln35 = A]	A1 M1	For using $y(0) = 14$
	$[-5 \ln 55 = A]$ t = 5 $\ln \{35/(49 - v)\}$	A1	For using $v(0) = 14$
	1 - 5 m (55/(4) - 7)	M1	For method of transposition
	$v = 49 - 35e^{-0.2t}$	A1	AG
		[8]	
(ii)		M1	For integrating to find x(t)
	$x = 49t + 175e^{-0.2t} (+B)$	A1	
			For using limits 0 to 3 or for using
	$[x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)]$	M1	x(0) = 0 and evaluating $x(3)$
	Distance is 68.0m	A1	
		[4]	

physicsandmathstutor.com

4730

Mark Scheme

January 2009

7(i)	Gain in EE = $20x^2/(2x2)$	B1	
			Accept 0.8gx if gain in KE is
	Loss in GPE = $0.8g(2 + x)$	B1	$\frac{1}{2}0.8(v^2 - 19.6)$
	$\begin{bmatrix} \frac{1}{2} \ 0.8 v^2 = (15.68 + 7.84 x) - 5 x^2 \end{bmatrix}$ v ² = 39.2 + 19.6x - 12.5x ²	M1	For using the p.c.energy
	$v^2 = 39.2 + 19.6x - 12.5x^2$	A1	AG
		[4]	
(ii)	(a)	M1	For attempting to solve $v^2 = 0$
	Maximum extension is 2.72m	A1	
		[2]	
	(b)		For solving $20x/2 = 0.8g$ or for
			differentiating and attempting to solve
	[19.6 - 25x = 0,		$d(v^2)/dx = 0$ or $dv/dx = 0$ or for
	$v^2 = 46.8832 - 12.5(x - 0.784)^2$]	M1	expressing v^2 in the form $c - a(x - b)^2$.
	x = 0.784 or $c = 46.9$	A1	
	2		For substituting $x = 0.784$ in the
	$[v_{\text{max}}^2 = 39.2 + 15.3664 - 7.6832]$	M1	expression for v^2 or for evaluating \sqrt{c}
	Maximum speed is 6.85ms ⁻¹	A1	
		[4]	
	(c)		For using Newton's second law (3 terms
		M1	required) or $a = v dv/dx$
	$\pm (0.8g - 20x/2) = 0.8a$		
	or $2v dv/dx = 19.6 - 25x$	A1	
	$a = \pm (9.8 - 12.5x)$. 1	
	or $\ddot{y} = -12.5y$ where $y = x - 0.784$	A1	
	$[a _{\max} = 9.8 - 12.5 \times 2.72 $	MI	For substituting $x = ans(ii)(a)$ into $a(x)$ or
	or $ \ddot{y}_{\text{max}} = -12.5(2.72 - 0.784]$	M1	$y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$
	Maximum magnitude is 24.2ms ⁻²	A1	
	6	[5]	