4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and (0.5)6.3 and angle θ correctly marked OR Changes of velocity in i and j directions $2.5 \cos \theta-6.3$ and $2.5 \sin \theta$, respectively. For sides $0.5 \times 2.5,0.5 \times 6.3$ and 2.6 (or 2.5, 6.3 and 5.2) OR $-2.6 \cos \alpha=0.5(2.5 \cos \theta-6.3)$ and $2.6 \sin \alpha=0.5(2.5 \sin \theta)$ $\left[5.2^{2}=2.5^{2}+6.3^{2}-2 \times 2.5 \times 6.3 \cos \theta \quad\right.$ OR $2.6^{2}=0.5^{2}\left\{(2.5 \cos \theta-6.3)^{2}+(2.5 \sin \theta)^{2}\right]$ $\cos \theta=0.6$	B1 B1ft M1 A1 [4]	May be implied in subsequent working. May be implied in subsequent working. For using cosine rule in triangle or eliminating α. AG
(ii)	$\sin \alpha=2.5 \mathrm{x} 0.8 / 5.2 \quad$ OR $-2.6 \cos \alpha=0.5(2.5 \times 0.6-6.3)$ Impulse makes angle of 157° or 2.75° with original direction of motion of P .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For appropriate use of the sine rule or substituting for θ in one of the above equations in θ and α For evaluating $(180-\alpha)^{0}$ or $(\pi-\alpha)^{c}$ SR (relating to previous 2 marks; max 1 mark out of 2) $\alpha=23^{\circ} \text { or } 0.395^{\mathrm{C}}$

2 (i)	$\begin{aligned} & {[70 \times 2=4 \mathrm{X}-4 \mathrm{Y}]} \\ & \mathrm{X}-\mathrm{Y}=35 \end{aligned}$	M1 A1 [2]	For taking moments about A for AB (3 terms needed)
(ii)	$\begin{aligned} & {[110 \times 3=-4 X+6 Y]} \\ & 2 X-3 Y+165=0 \end{aligned}$	M1 A1 [2]	For taking moments about C for BC (3 terms needed) AG
(iii)	$\mathrm{X}=270, \mathrm{Y}=235$ Magnitude is 358 N	M1 A1ft M1 A1ft [4]	For attempting to solve for X and Y ft any (X, Y) satisfying the equation given in (ii) For using magnitude $=\sqrt{X^{2}+Y^{2}}$ ft depends on all 4 Ms

3 (i)	$\begin{aligned} & {\left[\mathrm{T}_{\mathrm{A}}=(24 \times 0.45) / 0.6, \mathrm{~T}_{\mathrm{B}}=(24 \times 0.15) / 0.6\right]} \\ & \mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=18-6=12=\mathrm{W} \rightarrow \mathrm{P} \text { in equil'm. } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \end{aligned}$	For using $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA or PB
(ii)	Extensions are $0.45+\mathrm{x}$ and $0.15-\mathrm{x}$ Tensions are $18+40 \mathrm{x}$ and $6-40 \mathrm{x}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	AG From $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA and PB
(iii)	$\begin{aligned} & {[12+(6-40 \mathrm{x})-(18+40 \mathrm{x})=12 \ddot{x} / \mathrm{g}]} \\ & \ddot{x}=-80 \mathrm{gx} / 12 \rightarrow \text { SHM } \\ & \text { Period is } 0.777 \mathrm{~s} \end{aligned}$	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period $=2 \pi \sqrt{12 /(80 \mathrm{~g})}$
(iv)	$\begin{aligned} & {\left[\mathrm{v}_{\max }=0.15 \sqrt{80 \mathrm{~g} \mathrm{/12}}\right.} \\ & \quad \text { or } \mathrm{v}_{\text {max }}=2 \pi \times 0.15 / 0.777 \\ & \begin{aligned} & \text { or } 1 / 2(12 / \mathrm{g}) \mathrm{v}_{\text {mx }}^{2}+\mathrm{mg}(0.15) \\ &\left.+24\left\{0.45^{2}+0.15^{2}-0.6^{2}\right\} /(2 \mathrm{x} 0.6)=0\right] \end{aligned} \end{aligned}$ Speed is $1.21 \mathrm{~ms}^{-1}$	M1 A1 [2]	For using $\mathrm{v}_{\text {max }}=\mathrm{An}$ or $\mathrm{v}_{\text {max }}=2 \pi \mathrm{~A} / \mathrm{T}$ or conservation of energy (5 terms needed)

4 (i)	$\begin{aligned} & \text { Loss in } \mathrm{PE}=\mathrm{mg}(0.5 \sin \theta) \\ & {\left[1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{~m} 3^{2}=\mathrm{mg}(0.5 \sin \theta)\right]} \\ & \mathrm{v}^{2}=9+9.8 \sin \theta \end{aligned}$	B1 M1 A1 [3]	For using KE gain = PE loss (3 terms required) AG
(ii)	$\begin{aligned} & \mathrm{a}_{\mathrm{r}}=18+19.6 \sin \theta \\ & {\left[\mathrm{ma}_{\mathrm{t}}=\mathrm{mg} \cos \theta\right]} \\ & \mathrm{a}_{\mathrm{t}}=9.8 \cos \theta \end{aligned}$	B1 M1 A1 [3]	Using $\mathrm{a}_{\mathrm{r}}=\mathrm{v}^{2} / 0.5$ For using Newton's second law tangentially
(iii)	$\begin{aligned} & {\left[\mathrm{T}-\mathrm{mg} \sin \theta=\mathrm{ma}_{\mathrm{r}}\right]} \\ & \mathrm{T}-1.96 \sin \theta=0.2(18+19.6 \sin \theta) \\ & \mathrm{T}=3.6+5.88 \sin \theta \\ & \theta=3.8 \end{aligned}$	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial \mathbf{i} components of velocity for A and B are $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively. $\begin{aligned} & 3 \times 4+4 x 3=3 a+4 b \\ & 0.75(4-3)=b-a \\ & a=3 \end{aligned}$ Final \mathbf{j} component of velocity for A is $3 \mathrm{~ms}^{-1}$ Angle with l.o.c. is 45° or 135°	B1 M1 A1 M1 A1 M1 A1 B1 M1 A1ft [10]	May be implied. For using p.c.mmtm. parallel to l.o.c. For using NEL For attempting to find a Depends on all three M marks May be implied For using $\tan ^{-1}\left(v_{\mathbf{j}} / v_{\mathbf{i}}\right)$ for A ft incorrect value of a ($\neq 0$) only
			SR for consistent sin/cos mix (max 8/10) $3 \times 3+4 \times 4=3 a+4 b$ and $\mathrm{b}-\mathrm{a}=0.75(3-4)$ M1 M1 as scheme and A1 for both equ's $\mathrm{a}=4 \mathrm{M} 1$ as scheme A1 j component for A is $4 \mathrm{~ms}^{-1} \mathrm{~B} 1$ Angle $\tan ^{-1}(4 / 4)=45^{\circ}$ M1 as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10} \quad(=14)$ $\begin{aligned} & {[0.125 \mathrm{dv} / \mathrm{dt}=0.125 \mathrm{~g}-0.025 \mathrm{v}]} \\ & \int \frac{5 d v}{5 g-v}=\int d t \\ & -5 \ln (5 \mathrm{~g}-\mathrm{v})=\mathrm{t}(+\mathrm{A}) \\ & {[-5 \ln 35=\mathrm{A}]} \\ & \mathrm{t}=5 \ln \{35 /(49-\mathrm{v})\} \\ & \mathrm{v}=49-35 \mathrm{e}^{-0.2 \mathrm{t}} \end{aligned}$	B1 M1 M1 A1 M1 A1 M1 A1 [8]	For using Newton's second law with $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ (3 terms required) For separating variables and attempt to integrate For using $\mathrm{v}(0)=14$ For method of transposition AG
(ii)	$\mathrm{x}=49 \mathrm{t}+175 \mathrm{e}^{-0.2 \mathrm{t}}(+\mathrm{B})$ $\left[x(3)=\left(49 x 3+175 e^{-0.6}\right)-(0+175)\right]$ Distance is 68.0 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For integrating to find $\mathrm{x}(\mathrm{t})$ For using limits 0 to 3 or for using $x(0)=0$ and evaluating $x(3)$

7(i)	$\begin{aligned} & \text { Gain in } \mathrm{EE}=20 \mathrm{x}^{2} /(2 \mathrm{x} 2) \\ & \\ & \text { Loss in GPE }=0.8 \mathrm{~g}(2+\mathrm{x}) \\ & {\left[{ }^{1 / 2} 0.8 \mathrm{v}^{2}=(15.68+7.84 \mathrm{x})-5 \mathrm{x}^{2}\right]} \\ & \mathrm{v}^{2}=39.2+19.6 \mathrm{x}-12.5 \mathrm{x}^{2} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Accept 0.8 gx if gain in KE is $1 / 20.8\left(v^{2}-19.6\right)$ For using the p.c.energy AG
(ii)	(a) Maximum extension is 2.72 m (b) $\begin{aligned} & {[19.6-25 x=0,} \\ & \left.v^{2}=46.8832-12.5(x-0.784)^{2}\right] \\ & x=0.784 \text { or } c=46.9 \end{aligned}$ $\left[\mathrm{v}_{\max }{ }^{2}=39.2+15.3664-7.6832\right]$ Maximum speed is $6.85 \mathrm{~ms}^{-1}$ (c) $\begin{aligned} & \pm(0.8 \mathrm{~g}-20 \mathrm{x} / 2)=0.8 \mathrm{a} \\ & \mathrm{or} 2 \mathrm{v} \text { dv/dx }=19.6-25 \mathrm{x} \\ & \mathrm{a}= \pm(9.8-12.5 \mathrm{x}) \\ & \quad \text { or } \ddot{\mathrm{y}}=-12.5 \mathrm{y} \text { where } \mathrm{y}=\mathrm{x}-0.784 \\ & {\left[\|a\|_{\max }=\|9.8-12.5 \mathrm{x} 2.72\|\right.} \\ & \text { or }\left\|\ddot{y}_{\max }\right\|=\mid-12.5(2.72-0.784 \mid] \end{aligned}$ Maximum magnitude is $24.2 \mathrm{~ms}^{-2}$	M1 A1 [2] M1 A1 M1 A1 [4] M1 A1 A1 M1 A1	For attempting to solve $\mathrm{v}^{2}=0$ For solving $20 \mathrm{x} / 2=0.8 \mathrm{~g}$ or for differentiating and attempting to solve $d\left(v^{2}\right) / d x=0$ or $d v / d x=0$ or for expressing v^{2} in the form $\mathrm{c}-\mathrm{a}(\mathrm{x}-\mathrm{b})^{2}$. For substituting $x=0.784$ in the expression for v^{2} or for evaluating \sqrt{c} For using Newton's second law (3 terms required) or $\mathrm{a}=\mathrm{vdv} / \mathrm{dx}$ $\mathrm{y}=\operatorname{ans}(\mathrm{ii})(\mathrm{a})-0.784$ into $\ddot{y}(\mathrm{y})$

